Skip to main content

Explainer: Capacity Factor

Support Provided By
capacityexplainerimage.jpeg
Is this a photo or a video? The answer determines the turbines' capacity factor | Photo: K Ali/Flickr/Creative Commons License

News stories about renewable energy installations -- or other power plants, for that matter -- often mention building a certain number of megawatts' worth of power plant. For instance, take the headline of this February, 2009 piece from the LA Times business section, describing plans to build a whole lot of mid-sized photovoltaic installations across the state:

Pacific Gas & Electric will add 500 megawatts of solar power in California.

Or take this headline from a 2011 Bloomberg story covering solar company BrightSource's proposal to build a huge solar plant south of Blythe:

BrightSource Seeks Permit For 750-Megawatt Solar-Thermal Project

You might sensibly read statements like this as meaning that once these projects are built, California's power grid will have an additional 500 or 750 megawatts more electrical power available to it. Sadly, that's not precisely right.

When news stories or press releases refer to a power plant's megawattage, they are almost always citing what is called the "nameplate capacity" of the plant: the maximum amount of power the plant can safely put out on a sustained basis.

But power plants don't always run at peak performance. Anything from unplanned outages to scheduled maintenance and refueling can reduce a power plant's output all the way to zero for a time. Some kinds of power plants spend more time below peak production, or even offline, than others.

In order to judge a power plant's actual expected output over time, those predictable outages must be taken into account. Utility and grid planners quantify this by expressing the expected output of a plant as a percentage of theoretical maximum output.

Let's use the example in the first headline to illustrate what this means. That 500 megawatts of solar, if it generated power at full capacity for a year, would produce about 4,383,000 megawatt-hours of electrical power. (That's 500 megawatts, times 24 hours in a day, times 365.24 days in an average year.) But we know that solar cells don't put power out at peak capacity 24/7. For one thing, there's this pesky time period each day in which the sun goes down and no longer shines on the solar cells. Even when the sun is up, sometimes clouds can cut down the amount of light hitting the solar cells. Dust and leaves and occasional repairs each eat into the total amount of power produced in a year.

500 megawatts of PV will more likely produce something like 800,000 megawatt-hours of power in an average year. That's around 18 percent of maximum possible output for a 500 MW power plant. And that 18 percent is what the engineers call the PV installation's "capacity factor," the percentage of maximum possible output actually produced by the plant.

Different types of power plants will have different capacity factors. 

  • Coal plants in the US tend toward very high capacity factors, in the 75-80 percent range.
  • Nuclear power plants can theoretically reach capacity factors in the 90s, but seem in practice to run about equal with coal.
  • Hydroelectric plants have capacity factors that vary wildly depending on their design and the size of the water source that powers them. Many dam operators regulate power output to help store water or preserve downstream flow levels for environmental reasons, introducing variability in power production. Small dams on large rivers can run at capacity factors of 99 percent, but somewhere between 40-50 percent is more common for large dams.
  • Wind turbine installations, given variability of wind as a power source, generally have capacity factorsbetween 20-40 percent.
  • In sunny areas, solar generally has a capacity factor of just under 20 percent.
  • Geothermal offers the possibility of very high capacity factors compared to other renewables, in the neighborhood of 85-90 percent.
Support Provided By
Read More
Gray industrial towers and stacks rise up from behind the pitched roofs of warehouse buildings against a gray-blue sky, with a row of yellow-gold barrels with black lids lined up in the foreground to the right of a portable toilet.

California Isn't on Track To Meet Its Climate Change Mandates. It's Not Even Close.

According to the annual California Green Innovation Index released by Next 10 last week, California is off track from meeting its climate goals for the year 2030, as well as reaching carbon neutrality by 2045.
A row of cows stands in individual cages along a line of light-colored enclosures, placed along a dirt path under a blue sky dotted with white puffy clouds.

A Battle Is Underway Over California’s Lucrative Dairy Biogas Market

California is considering changes to a program that has incentivized dairy biogas, to transform methane emissions into a source of natural gas. Neighbors are pushing for an end to the subsidies because of its impact on air quality and possible water pollution.
A Black woman with long, black brains wears a black Chicago Bulls windbreaker jacket with red and white stripes as she stands at the top of a short staircase in a housing complex and rests her left hand on the metal railing. She smiles slightly while looking directly at the camera.

Los Angeles County Is Testing AI's Ability To Prevent Homelessness

In order to prevent people from becoming homeless before it happens, Los Angeles County officials are using artificial intelligence (AI) technology to predict who in the county is most likely to lose their housing. They would then step in to help those people with their rent, utility bills, car payments and more so they don't become unhoused.